博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
CodeForces 1062E Company
阅读量:6311 次
发布时间:2019-06-22

本文共 7060 字,大约阅读时间需要 23 分钟。

Description

The company \(X\) has \(n\) employees numbered from \(1\) through \(n\). Each employee \(u\) has a direct boss \(p_u\) \((1 \le p_u \le n)\), except for the employee \(1\) who has no boss. It is guaranteed, that values \(p_i\) form a tree. Employee \(u\) is said to be in charge of employee \(v\) if \(u\) is the direct boss of \(v\) or there is an employee \(w\) such that \(w\) is in charge of \(v\) and \(u\) is the direct boss of \(w\). Also, any employee is considered to be in charge of himself.

In addition, for each employee \(u\) we define it's level \(lv(u)\) as follow:

  • \(lv(1)=0\)
  • \(lv(u)=lv(p_u)+1\) for \(u \neq 1\)

In the near future, there are \(q\) possible plans for the company to operate. The \(i\)-th plan consists of two integers \(l_i\) and \(r_i\), meaning that all the employees in the range \([l_i,r_i]\), and only they, are involved in this plan. To operate the plan smoothly, there must be a project manager who is an employee in charge of all the involved employees. To be precise, if an employee \(u\) is chosen as the project manager for the \(i\)-th plan then for every employee \(v \in [l_i,r_i]\), \(u\) must be in charge of \(v\). Note, that \(u\) is not necessary in the range \([l_i,r_i]\). Also, \(u\) is always chosen in such a way that \(lv(u)\) is as large as possible (the higher the level is, the lower the salary that the company has to pay the employee).

Before any plan is operated, the company has JATC take a look at their plans. After a glance, he tells the company that for every plan, it's possible to reduce the number of the involved employees exactly by one without affecting the plan. Being greedy, the company asks JATC which employee they should kick out of the plan so that the level of the project manager required is as large as possible. JATC has already figured out the answer and challenges you to do the same.

Input

The first line contains two integers \(n\) and \(q\) \((2 \le n \le 100000, 1 \le q \le 100000)\) — the number of employees and the number of plans, respectively.

The second line contains \(n−1\) integers \(p_2,p_3,…,p_n(1≤p_i≤n)\) meaning \(p_{i}\) is the direct boss of employee \(i\).

It is guaranteed, that values \(p_{i}\) form a directed tree with the root of \(1\).

Each of the following \(q\) lines contains two integers \(l_i\) and \(r_i\) \((1 \le l_i < r_i \le n)\) — the range of the employees, involved in the corresponding plan.

Output

Print \(q\) lines, each containing two integers — the number of the employee which should be kicked from the corresponding plan and the maximum possible level of the project manager in that case.

If there are more than one way to choose that employee, print any of them.

Example

Input

11 51 1 3 3 3 4 2 7 7 64 64 81 119 118 11

Output

4 18 11 011 38 1

Note

In the example:

CodeForces%201062E.jpg

In the first query, we can choose whether \(4\) or \(5\) or \(6\) and the project manager will be \(3\).

In the second query, if we choose any employee other than the employee \(8\), the project manager will be \(1\). If we choose \(8\), the project manager will be \(3\). Since \(lv(3)=1 \gt lv(1)=0\), choosing \(8\) is the best strategy.

In the third query, no matter how we choose the employee, the project manager will always be \(1\).

In the fourth query, if we choose \(9\) or \(10\) then the project manager will be \(3\). If we choose \(11\) then the project manager will be \(7\). Since \(lv(7)=3 \gt lv(3)=1\), we choose \(11\) as the answer.

Solution

题意:给一棵树,\(n\)个点,\(q\)次询问,每次询问给定一个区间\([l, r]\),要求忽略掉\([l, r]\)中的一个点,使得剩下的$r - l $个点的LCA的深度最大,问应该忽略哪个点,忽略后的最大深度是多少。

首先求一次DFS序,对于任意点\(u\),其DFS序记为\(order[u]\)。给定区间\([l, r]\),设其中DFS序最大和最小的点分别为\(u\)\(v\),则\(LCA[l, r]\)就是\(LCA(u, v)\)。我们可以简单证明一下,不妨设\(r = LCA(u, v)\),点\(x\)不属于以\(r\)为根的子树(记作\(SubTree(r)\))当且仅当\(order[x]\)满足以下两种情况中的一种:

  • \(order[x] \lt order[r]​\),即\(x​\)\(r​\)之前被访问
  • \(order[x] > order[i], \forall i \in SubTree(r)\),即\(x\)\(SubTree(r)\)之后才被访问

显然,\([l, r]\)中的任何一个点都不满足上述两个条件,所以\([l, r]\)中的每个点都属于以\(r\)为根的子树,所以它们的LCA就是\(r\)

回到我们的问题,对于每次询问,给定\([l, r]\),我们先求出其中DFS序最大、最小的点\(u, v\)以及它们的LCA \(r\)。显然,忽略\(u\)\(v\)之外的节点对并不会改变LCA;如果忽略\(u\),那么新的LCA就是\(LCA[l, u-1]\)\(LCA[u + 1, r]\)的LCA,我们称之为\(r_1\);同理,忽略\(v\)也可以得到一个新的LCA,我们称之为\(r_2\)。选择\(r, r_1, r_2\)中深度最大的点,我们就得到了答案。

#include 
using namespace std;const int maxn = 100011;const int maxp = 18;vector
w[maxn];int idx, dfsod[maxn], invdfsod[maxn];int fa[maxn][maxp], dep[maxn];void bfs(int root) { queue
que; dep[root] = 0; fa[root][0] = root; que.push(root); while (!que.empty()) { int u = que.front(); que.pop(); for (int i = 1; i < maxp; i++) fa[u][i] = fa[fa[u][i - 1]][i - 1]; for (int v : w[u]) { if (v == fa[u][0]) continue; dep[v] = dep[u] + 1; fa[v][0] = u; que.push(v); } }}int lca(int u, int v) { if (dep[u] > dep[v]) swap(u, v); for (int gap = dep[v] - dep[u], i = 0; gap; gap >>= 1, i++) { if (gap & 1) v = fa[v][i]; } if (u == v) return u; for (int i = maxp - 1; i >= 0; i--) { if (fa[u][i] == fa[v][i]) continue; u = fa[u][i], v = fa[v][i]; } return fa[u][0];}void dfs(int u, int pre = -1) { dfsod[u] = ++idx; invdfsod[idx] = u; for (int v : w[u]) { if (v == pre) continue; dfs(v, u); }}struct node { int l, r, mx, mn;} seg[maxn << 2];void pushup(int x) { seg[x].mx = max(seg[x << 1].mx, seg[x << 1 | 1].mx); seg[x].mn = min(seg[x << 1].mn, seg[x << 1 | 1].mn);}void build(int x, int l, int r) { seg[x].l = l, seg[x].r = r; if (l == r) { seg[x].mx = seg[x].mn = dfsod[l]; return; } int m = (l + r) >> 1; build(x << 1, l, m); build(x << 1 | 1, m + 1, r); pushup(x);}pair
query(int x, int l, int r) { int L = seg[x].l, R = seg[x].r; if (l <= L && r >= R) return make_pair(seg[x].mn, seg[x].mx); int m = (L + R) >> 1; int mx = 0, mn = 1 << 30; if (l <= m) { auto v = query(x << 1, l, r); mn = min(mn, v.first); mx = max(mx, v.second); } if (r > m) { auto v = query(x << 1 | 1, l, r); mn = min(mn, v.first); mx = max(mx, v.second); } return make_pair(mn, mx);}// 区间[l, r]的LCAint getlca(int l, int r) { if (l > r) return -1; auto x = query(1, l, r); int u = invdfsod[x.first], v = invdfsod[x.second]; return lca(u, v);}// 忽略u后,区间[l, r]的LCAint getlca(int l, int r, int u) { int a = getlca(l, u - 1), b = getlca(u + 1, r); if (a == -1) return b; if (b == -1) return a; return lca(a, b);}int main() { int n, q; scanf("%d%d", &n, &q); for (int i = 2; i <= n; ++i) { int x; scanf("%d", &x); w[x].push_back(i); w[i].push_back(x); } bfs(1); dfs(1); build(1, 1, n); dep[0] = -1; while (q--) { int l, r; scanf("%d%d", &l, &r); auto x = query(1, l, r); int u = invdfsod[x.first], v = invdfsod[x.second]; int c = lca(u, v), a = getlca(l, r, u), b = getlca(l, r, v); int mx = max(dep[c], max(dep[a], dep[b])), y; if (mx == dep[c]) y = l; else if (mx == dep[a]) y = u; else y = v; printf("%d %d\n", y, mx); } return 0;}

转载于:https://www.cnblogs.com/hitgxz/p/9977660.html

你可能感兴趣的文章
基于zepto或jquery的手机端弹出框成功,失败,加载特效
查看>>
php引用(&)
查看>>
Delphi 操作Flash D7~XE10都有 导入Activex控件 shockwave
查看>>
oracle 学习笔记之名词解释
查看>>
MySQL Cluster搭建与测试
查看>>
python数据分析画图体验
查看>>
军规15 确保集成和调用第三方APP
查看>>
Etcd和ZooKeeper,究竟谁在watch的功能表现更好?
查看>>
Shredding Company 碎纸机,dfs()枚举每一种情况,再加剪枝。
查看>>
命名空间和模块化编程 - C++快速入门39
查看>>
结构化程序设计03 - 零基础入门学习Delphi12
查看>>
今天才知道怎么插入代码!!!!!!!!!
查看>>
D2007在64位Win7出现 delphi 2007 assertion failure thread32.cpp 的解决办法
查看>>
STM32的TAMPER-RTC管脚作为Tamper的使用[转]
查看>>
[记]一个逐步“优化”的范例程序
查看>>
2012-01-09_2
查看>>
数学 - 线性代数导论 - #5 矩阵变换之置换与转置
查看>>
java数据结构:队列
查看>>
Hibernate双向一对一对象关系模型映射
查看>>
elasticsearch-jdbc
查看>>